Equipment Related Issues and Controls in the US Mining Industry

Lisa J. Steiner, MS, CPE
MSD Prevention Team Leader
National Institute for Occupational Safety and Health
October 17, 2006
LSteiner@cdc.gov

Equipment related injuries

<table>
<thead>
<tr>
<th>Equipment</th>
<th>MSHA (2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=3556</td>
</tr>
<tr>
<td>Roof Bolter</td>
<td>593 (17%)</td>
</tr>
<tr>
<td>Continuous Miner</td>
<td>283 (8%)</td>
</tr>
<tr>
<td>Shuttle Car/Transport/LHD</td>
<td>430 (12%)</td>
</tr>
<tr>
<td></td>
<td>4% each</td>
</tr>
</tbody>
</table>

Haulage/Transport Data
Top Hazards in U.S.

- Rock falling from supported roof
 - Screening Studies
- Collisions while driving
 - HASARDS (Proximity Warning Device)
- Driving or traveling in UG vehicles / rough roads
 - Seat Suspension and Damping Materials Studies
- Handling continuous miner cable
 - Future work
- Inadvertent or incorrect operation of bolting machine controls
 - Struck by injuries: Boom Speed (Reaction Time Tests)
 - Roof Bolter Controls Studies
Rock Falling from Supported Roof

- Roof Screening Studies
 - Lifting Roof Screen
 - Transporting (Carrying/Dragging) Roof Screen
 - Installation of Roof Screen
 - Analysis of intervention to assist screen installation

Lifting Screen

- Independent variables
 - Two screens (Full screen, personal bolter screen)
 - Vertical space (66", 84")
 - Screen orientation (leaning against rib, flat on floor)

- Dependent variables
 - Muscle Activity
 - Motion analysis
 - Force plates

Results

- Muscle activity
 - Rib condition resulted in lower muscle loadings than lifts from floor
 - No difference between lifting PBS (1 person lift) and FRS (2 person lift)
 - No difference between side/overhead lifting
Transporting screen

- Two screens (FRS, PBS)
- Overhead carry, carry to the side, drag
- Vertical space (66” and 84”)

Results of Screen Transport

- Dragging increases muscle activity compared to side carry
- Other comparisons not significantly different

Screen Installation

- 8 subjects tested in late October in our Human Performance Research Mine
- Monitored trunk kinematics (LMM) and muscle activity (trunk and forearms)
- Performed installation task at two seam heights (60” and 84”), with and without intervention (rails to assist sliding screen across bolter)
Roof Screen Installation –

- Subjects exhibited increased torso flexion and velocity of motion in morning trials
- Workers may be at increased risk early in the shift

Rail Intervention Effectiveness

- Intervention did not affect trunk kinematics
- When looking at overall task, muscle activity not affected by intervention
- When isolating intervention phase, muscle activity was found to be significantly lower

Collisions While Driving
HASARD

- Hazardous Area Signaling and Ranging Device
 - Accurate to Inches
 - Penetrates
 - Rock
 - 3/8" Steel
 - Water
 - Survived 6 Months Production
 - IS or XP compliant

Test on Joy 14CM

Zones of worker protection

Magnetic field around Joy14CM

All three generators operating
Driving/Traveling – Rough Roads

- Accounted for 20% of the UG injuries associated with Scoop/LHD/Shuttle car/Transport in 2004
- Jarring/jolting is a major contributor
 - averaging 77% of back, neck, and head injuries for each year from 1999-2003 (MSHA Injury Data)

Research Methods

- Laboratory studies of foam padding and seat suspension systems
- Mockup of prototype seats
- Field studies before and after intervention trials.
- Research Design
 - Compare NIOSH and existing seat designs for no-load (empty vehicle) and full-load (vehicle fully loaded with coal) conditions on low- and mid-coal seam shuttle cars.

Seat Design Comparison

Low-Seam Shuttle Cars

Mid-Seam Shuttle Cars
Results to date

- For two shuttle car models 1999 through 2005:
 - >510 with newly designed seats

- Estimated 2600 shuttle cars are in operation worldwide (1500 in the USA).
 - So far, 15 percent of global shuttle car population equipped with the new seat or padding design.

- U.S. domestic market:
 - 26 percent low-coal seam shuttle cars equipped with improved seat design.

- Estimate that the new seat design positively impacts the health and safety of approximately 1140 shuttle car operators.**

**Assume: 350 shuttle cars with new seat designs – 130 shuttle cars on low-coal seam model, 220 shuttle cars on mid-seam model (1 seat per vehicle); 350 total shuttle cars in U.S. low-seam operations for 2005; 1 operator per shuttle car per shift, 3 shifts per day.

Handling Continuous Miner Cable

Control Activation – RB Boom Speeds

Observations
Laboratory Studies
JACK Simulations

Vertical Boom Speeds
Swing Speeds
Tramming Speeds (CMM)
Inadvertent or Incorrect Activation of Controls?

- Consequences of mirror vs non-mirrored control layouts on error and reaction time
- Relative importance of location coding, shape coding and length coding
- Relative strengths of direction control-response compatibility relationships in different planes.
- Consequences for new operators of different designs and layouts
- Consequences for current operators of changing to a new design and/or layout

Proposed Controls Design Research

- Lab investigations at Perception and Motor Systems Laboratory, UQ
- Lab investigations at NIOSH Pittsburgh Research Laboratory – Human Performance Research Mine
- Field testing by NIOSH Pittsburgh in collaboration with Fletcher and/or ARO

NIOSH Future Research

- Form Alliances with OEMs to:
 - Integrate human factors principles into the design of equipment
 - Educate the OEM interface to communicate best practices
 - ordering new equipment
 - Retrofitting equipment – warranty/liability issues
 - Problem solving techniques
- Validate equipment design research in the field
 - Roof bolter boom speeds
 - CMM tramming speeds
- Specific research related to
 - Handling miner cable
 - Roof bolter controls